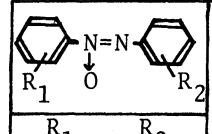


SELECTIVE ORTHO-WALLACH REARRANGEMENT OF 1:1 COMPLEX OF AZOXYBENZENES WITH $SbCl_5^1$

Jiro YAMAMOTO, Yukihiko NISHIGAKI, Masahiro IMAGAWA, Masahiro UMEZU,
and Teruo MATSUURA*

Department of Industrial Chemistry, Faculty of Engineering, Tottori University,
Tottori 680

*Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University,
Kyoto 606


Treatment of azoxybenzenes with $SbCl_5$ gave crystalline 1:1 complexes,
which on heating underwent selective ortho-Wallach rearrangement to
yield exclusively o-hydroxyazobenzenes.

The Wallach rearrangement of azoxybenzenes using an acid catalyst² is known to give hydroxyazobenzenes, in which para-hydroxylation is largely predominant over ortho-hydroxylation, except the case of p,p'-disubstituted azoxybenzenes.³ The formation of p-hydroxyazobenzenes has been rationalized by a mechanism involving a dicationic intermediate which is formed from a monoprotonated azoxybenzene by further protonation and subsequent dehydration,^{3,4} while o-hydroxyazobenzenes are considered to be formed by an intramolecular mechanism.^{5,6} We reported here a new finding that a 1:1 complex of azoxybenzenes with $SbCl_5$, on thermolysis, gives rise to selective production of the corresponding o-hydroxyazobenzenes.

When equimolar solutions of azoxybenzene and $SbCl_5$ in carbon tetrachloride were mixed, a 1:1 complex immediately deposited as orange crystals in 95.5 % yield. The compound gave satisfactory elemental analysis. The complex was very hygroscopic and on hydrolysis gave the starting azoxybenzene. Results on the thermal reaction of complexes of various azoxybenzenes with $SbCl_5$ in nitrobenzene, giving o-hydroxyazobenzenes as the main product, were shown in Table, which includes the o/p product ratios in the usual Wallach rearrangement conditions (80-90 % sulfuric acid). Thus, the present reaction provided a novel synthetic method for preparing o-hydroxyazobenzenes. Although the mechanism of this Wallach rearrangement remains to be clarified, the predominant formation of o-hydroxyazobenzenes without azobenzenes suggests that the intramolecular attack of the O-Sb group is involved.

Treatment of azoxybenzene with other Lewis acids, such as $FeCl_3$, $AlCl_3$, and $CuCl$, in carbon tetrachloride gave no precipitation and the isolation of the complexes in

Table Selective ortho-Wallach rearrangement of 1:1 Complex of Azoxybenzenes with $SbCl_5$

		m.p. a) (°C)	Reaction Condition		Alkali soluble products (%)			o/p Ratio b)
			Temp. (°C)	Time (hr)	o-Hydroxy- azobenzenes	p-Hydroxyazo- benzenes	Polymer	
H	H	107—107.5	86—88	5.0	63.5	1.6	24.8	98:2(13:87)
o-CH ₃	o-CH ₃	134—134.5	190—195	0.5	12.5	Not detected	12.5	100:0(0:100)
m-CH ₃	m-CH ₃	111—112	103 ^{c)}	20.0	16.4 ^{d)}	4.5	4.4	78:22(9:91)
H	p-CH ₃	107—108	92	5.0	72.8 ^{e)}	Not detected	27.2	100:0(21:79)
p-Cl	H	40.5—41	103 ^{c)}	20.0	0.7 ^{f)}	Not detected	9.6	100:0(17:83)
p-NO ₂	H	g)	200	5.0	7.1 ^{h)}	2.5	5.8	74:26(7:93)

a) Melting point was measured in a capillary and uncorrected. b) In parentheses, the o/p ratio in the Wallach rearrangement of each azoxybenzenes using 80—90 % sulfuric acid is given. c) Nitromethane was used as the solvent for thermolysis. d) 2-Hydroxy-5,3'-dimethylazobenzene. e) 2-Hydroxy-4-methylazobenzene. f) 2-Hydroxy-4'-chloroazobenzene. g) Measurement of melting point was difficult because of its highly hygroscopic character. h) 2-Hydroxy-4'-nitroazobenzene.

pure form was unsuccessful. However, on refluxing an equimolar mixture of azoxybenzene and $FeCl_3^7$ in nitrobenzene for 5 hr, 8.2 % of o-hydroxyazobenzene and 3.1 % of azobenzene were obtained. α -Pyridone was obtained in 80 % yield by the thermolysis of the isolated 1:1 complex of pyridine N-oxide with $SbCl_5$ in nitromethane.

References and Notes

1. Previous paper; J. Yamamoto, N. Sato, M. Koshikawa, Y. Isoda, and M. Umez, Yuki Gosei Kagaku Kyokaishi, 33, 270 (1975).
2. Although sulfuric acid is widely used as the catalyst,³ chlorosulfuric acid [L. A. Pearl and R. A. Ronzio, J. Org. Chem., 12, 785 (1947); J. Yamamoto and K. Furuya, Yuki Gosei Kagaku Kyokaishi, 31, 605 (1973).] and trichloroacetic acid [J. Yamamoto, N. Sato, Y. Isoda, and M. Koshikawa, Rep. Fac. Eng. Tottori Univ., No. 4, 153 (1973); Ref. 1] are also effective catalysts.
3. E. Bunzel, "Mechanisms of Molecular Migration", Vol. 1 (Ed., B. S. Thyagarajan), Interscience Publ., New York and London, 1968, p.61
4. G. A. Olah, K. Dume, D. P. Kelly, and Y. K. Mo, J. Amer. Chem. Soc., 94, 7438 (1972).
5. M. M. Shemyakin, T. E. Agadzhanyan, V. I. Maimind, R. V. Kurdryavtsev, and D. N. Kursanov, Dokl. Akad. Nauk SSSR, 135, 346, (1960). [Chem. Abstr., 55, 11337 (1961).]
6. S. Oae, T. Fukumoto, and M. Yamagami, Bull. Chem. Soc. Japan, 36, 601 (1963).
7. Reaction of azoxybenzene with aromatic hydrocarbon [E. Bandroski and M. Prokopeczko, Chem. Zentr., 1, 1491 (1904).] and acetyl chloride [J. F. Vozza, J. Org. Chem., 34, 3216 (1969).] in the presence of $AlCl_3$ or $FeCl_3$ has been reported to give arylated and chlorinated azobenzenes, respectively.